
Data-driven Multi-Modal Partial Medical Image
Preregistration by Template Space Patch

Mapping

Ding Xia1, Xi Yang2, Oliver van Kaick3, Taichi Kin1, and Takeo Igarashi1

1 The University of Tokyo, 7 Chome-3-1 Hong, Bunkyo City, Tokyo, Japan, 113-8654
2 Jilin University, No.2699, Qianjin Street, Changchun, Jilin, China, 130012

3 Carleton University, 1125 Colonel By Dr, Ottawa, Canada, K1S 5B6

Abstract. Image registration is an essential part of Medical Image Anal-
ysis. Traditional local search methods (e.g., Mean Square Errors (MSE)
and Normalized Mutual Information (NMI)) achieve accurate registra-
tion but require good initialization. However, finding a good initializa-
tion is difficult in partial image matching. Recent deep learning methods
such as images-to-transformation directly solve the registration prob-
lem but need images of mostly same sizes and already roughly aligned.
This work presents a learning-based method to provide good initializa-
tion for partial image registration. A light and efficient network learns
the mapping from a small patch of an image to a position in the tem-
plate space for each modality. After computing such mapping for a set
of patches, we compute a rigid transformation matrix that maps the
patches to the corresponding target positions. We tested our method to
register a 3DRA image of a partial brain to a CT image of a whole brain.
The result shows that MSE registration with our initialization signif-
icantly outperformed baselines including naive initialization and recent
deep learning methods without template. You can access our source code
in https://github.com/ApisXia/PartialMedPreregistration.

Keywords: Multi-modal · Partial image · Preregistration · Patch map-
ping.

1 Introduction

Multi-modal medical image registration (fusion or alignment) merges informa-
tion from various medical imaging devices, helping surgeons obtain a holistic
view of the target organ. The target of our work is medical imaging of the hu-
man brain by registering two types of modalities: three-dimensional rotational
angiography (3DRA) [5, 16, 6], which provides detailed information of the 3D
vasculature of patients, and CT angiography [13, 9], which provides additional
information about surrounding bone and soft tissue. We assume that the target
organ is identical (same patient, same time), so the images can be aligned with
a rigid transformation. This paper explicitly targets partial image registration,
where one of the images (3DRA) only partially covers the target organ (brain),
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Fig. 1. Overview and demonstration of our proposed initialization method and center-
initialization methods.

which is common and critical because only the part containing the lesion area of
the brain is often scanned in medical practice due to radiation exposure concerns.

Popular multi-modal registration methods use Mean Square Errors (MSE)
or Normalized Mutual Information (NMI) [21, 15], which are essentially a local
search. Thus, they require good initialization. A naive but still popular initial-
ization approach in practice is to align the center of the two input images [20, 7].
However, this heuristic does not work well for partial image registration where
the image centers are far apart.

Closely related to our problem, a few recent works have introduced deep
learning supervised models to learn a transformation for rigid registration of
multi-modal medical images. Zheng et al. [24, 25] proposed a model based on
lightweight CNNs to hierarchically regress the 6Dof pose parameters of 2D X-
ray images. Yan et al. [22] proposed the adversarial image registration network
(AIR-net) based on the GAN framework with simultaneously trained CNNs for
transformation parameter estimation and registration quality evaluation. Sloan
et al. [18] align MR T1- and T2-weighted images using a variety of neural net-
works which incorporate user knowledge of the task. Yao et al. [23] proposed a
hierarchical registration framework that combines the conventional method and
regression CNNs for image-guided radiotherapy (IGRT). Bashiri et al. [1] propose
a transformation method to obtain accurate alignment of multi-modal images in
both cases, with full and partial overlap, by manifold learning. Moreover, Guo
et al. [4] introduced a coarse-to-fine multi-stage registration (MSReg) frame-
work, which consists of N consecutive networks for registration of multi-modal
prostate images. Liao et al. [10] introduced a Point-Of-Interest Network, which
directly computes 2D/3D registration by establishing point-to-point correspon-
dence between multiple views of digitally reconstructed radiographs (DRRs) and
X-ray images. Song et al. [19] develop a self-attention mechanism specifically for
cross-modal image registration.

The aforementioned deep learning methods assume that the two images cover
the same region (whole brain) and are mostly aligned already [22, 25, 4, 19]. More-
over, most of them require that the inputs of different modalities have the same
sizes. Thus, these methods do not work well for partial image registration with-
out proper initialization and preprocessing. If registration fails, then manual
initialization is necessary. A popular method is to specify a few landmarks on
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image slices manually, but the process is tedious and requires expertise. Our
work aims to eliminate or minimize the need for such manual initialization.

Our paper introduces a template-space patch mapping (TSPM) method pro-
viding reliable initialization for local-search registration in rigid multi-modal
partial image registration. Instead of matching two images directly, we register
the two images to a common template space using a pre-trained neural network.
We use patch-based mapping to handle images of diverse sizes and a RANSAC-
based fitting algorithm to remove outliers. The network is trained with manually
registered images. We then run traditional local search registration on the given
initialization to obtain the final registration result. We tested our method on the
dataset of 93 pairs of 3DRA (partial, moving image) and CT (fixed images) vol-
umes. The results show that registration with our learning-based initialization
achieves registration error 4.453mm, which significantly outperforms registration
with naive initialization by centering (Fig. 1).

2 Method

Fig. 2 describes the overall workflow of our method. The 3DRA volume is consid-
ered the moving image in this image registration application, and the CT volume
is the fixed image. Compared to the pipeline of traditional registration methods,
we replace the common initialization methods, like center-initialization, with
our novel deep-learning-based initialization method, TSPM. Then we use the
output of our method as initialization for precise alignment (refinement) using
traditional local search. Our method prioritizes robustness on the global scale
rather than precision on the local scale because it is more critical to reliably
return a roughly correct alignment than seek local precision sacrificing global
alignment.

2.1 Template-Space Patch Mapping (TSPM)

The proposed Template-Space Patch Mapping method takes the 3DRA volume
as input and provides the predicted position in the template space as output, as
shown in the circled part of Fig. 2. The method comprises two parts: prediction
of patch locations in the template space and rough transformation calculation
based on these predictions.

As for the template space, we randomly picked a case from a collection of
registered images to define the template. In practice, different templates will not
affect the performance of our method, but we still recommend choosing templates
with typical skull shapes. The CT volume of this case is scaled to fit a 128 px
cubic space with its center aligned to the center of the space. The rest space in
the cubic space is filled with the background density of the template CT volume.

Next, we randomly sample a fixed number (100 in our implementation) of
small image patches (16×16×16 px) from the moving image. We discard image
patches with more than 40% background regions and re-sample patches until we
have enough qualified patches. Then, we feed each image patch to a pre-trained
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Fig. 2. The proposed workflow.

Fig. 3. Overview of the position prediction network structure.

position prediction network and obtain its target position θ = {tx, ty, tz} in a
shared template space as output, without considering the rotation of patches.
The network consists of five layers of 3D convolution and two layers of fully-
connected networks (Fig. 3).

Last, we compute the rigid transformation matrix that moves the patches
to the corresponding target positions as closely as possible. We use the method
described in Section 3.3 of [12], which first computes an affine transformation by
least-squares fitting and then extracts a rigid transformation by polar decompo-
sition. In order to improve the robustness of the predicted rigid transformation
matrix, we also apply RANSAC [3] to filter outliers because some patches have
insignificant features and fail in template location prediction. We randomly select
six data points from the patch set in our pipeline and calculate the best-fitting
transformation. Other settings in RANSAC is error threshold (10) and minimum
pick number (20). We count inliers whose distance between the predicted patch
positions and transformation results is less than a threshold (10 mm). We repeat
the process at least 2,000 iterations and return the rigid transformation matrix
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Amov with the most number of inlier points (we continue iterations until we get
more than 30 inliers).

2.2 Pipeline Execution

As we have the output of our proposed method as initialization, we use Air-
Lab [17] to do alignment and refinement with traditional local search methods
(MSE and NMI). Because the original version of AirLab is incapable of process-
ing partial volumes, we modified the code as needed.

The corresponding fixed volume is preprocessed like that of the template case
first. Next, we register it to the template space using a traditional local search
method and get the rigid transformation matrix Afix. Now we have moving
and fixed volume in the same template space. The relative rigid transformation
A∗ from the moving volume to the fixed volume can be simply obtained as
A∗ = A−1

fixAmov. We then apply traditional local search registration to precisely
register the moving image to the fixed image. Since the two images are already
mostly aligned, these local search methods quickly and reliably find a precise
alignment.

3 Experiments

Data and Preprocessing The dataset we used for experiments contains 93
pairs of 3DRA and CT images. All of them were collected and registered by
medical professionals using existing tools. 3DRA images are partial, which is
common in daily medical image collection. We categorize the 3DRA images into
four categories according to their largest spacing: tiny (<70mm, ×14), small (70-
110mm, ×16), medium (110-135mm, ×13), and large (>135mm, ×50). Different
brain regions are covered with similar probabilities. The Cerebellum is more
frequently collected, while the Front lobe is less often.

Surgeons created the ground-truth registered dataset with Amira [20] by
these steps: 1) Manually initialize a rough relative position and rotation be-
tween 3DRA and CT images; 2) Crop down CT to the size of 3DRA due to the
automatic workflow of NMI in Amira requires the input of 2 modalities has the
same sizes; 3) Manually verify the results.

For the training of our position prediction network, we randomly sampled
150 small patches for each case as we describe in Section 2. The density of input
3DRA patches is confined in [−500, 3000] and scaled to [−0.5, 0.5]. The output
of the network is a position (xyz) in the canonical space (using [0, 1] to represent
actual [0, 128] template space). We adopt the L1 loss as the loss function because
compared to the L2 loss, L1 is less sensitive to outliers.

Implementation Our proposed method and the other baseline methods are im-
plemented with PyTorch 1.9 [14] and deployed on the same machine, equipped
with an Nvidia Titan RTX GPU and an Intel Core (i9-9960X) CPU. The imple-
mentation of the traditional registration in our pipeline is based on AirLab [17].
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For initializing the model, we adopt Adam optimizer [8] with a fixed learning rate
of 0.001. We strictly divide trainset and testset and run 5-fold cross-validation
taking 1/5 of the data as test data and 4/5 as training data, and train all
the methods from scratch (1000 epochs for our initialization model). The train-
ing/testing stage only uses patches from corresponding cases.

Measurements. As suggested by professional neurosurgeons, we define anchor
error as the average distance between the predicted positions of predefined an-
chor points and their ground truth positions. In our experiments, the anchor
points are taken from a 5 × 5 × 5 mesh grid filling each 3DRA volume, with a
total of 125 points. We did not exclude background points. We set a threshold
of 4mm for the registration success as experts suggested. The same threshold
is used in the literature [21]. Errors below this threshold are acceptable, and
the result will be sent to later processing in the clinical practice. Professional
neurosurgeons will rerun registration with manual initialization if the error is
more prominent than this threshold.

Baseline Methods To evaluate the performance of the proposed model, we
compared our model with two initialization methods and two deep-learning-
based methods. As for the initialization method, the first is naive center ini-
tialization (Center-Init). We aligned the center of moving and fixed images, but
we did not change orientation. The second is a variant of our method without
image patches (w/o Patches). We directly map the entire moving image to the
template space by using a network that computes a rigid transformation (trans-
lation and rotation) for an image. In the refinement stage, we also tested two
different metrics (NMI, MSE).

For deep-learning-based models, we chose two recent models as baseline:
Attention-Reg [19] (AttenReg) and Multi-modal SDAE [2] (SDAE+DNN). Attention-
Reg is an end-to-end rigid registration method with two entire images as input.
We modified the input size to 96× 96× 96 for our dataset. The 3DRA image is
put in the center of cubic space to meet the input constraints of the model and
the space is filled with background values. Multi-modal SDAE is an end-to-end
model learning whether patches from different modalities match. We could not
access the open-sourced code of this paper, so we implemented our version and
modified it to satisfy the requirement of our dataset. We adopt the code [11]
for the pre-train stage and construct the DNN with similar five layers (2048-
1024-256-128-2) from the paper. We trained all models directly using the given
training images (4/5 of the dataset) without any data augmentation as in our
proposed method.

Results The summary of the results with a 4mm anchor error threshold is
given in table 1. We combined and analyzed the results of five folds. Compared
to Center-Init, our proposed method provides better performance, demonstrat-
ing that proper initialization is critical for iterative registration methods. For
w/o Patches, it is harder for the model to predict a rough registration with in-



Multi-modal Preregistration by Template Space 7

Table 1. Summary statistics with 4mm anchor error threshold.

Methods MSE NMI w/o Refinement
Cent. w/o P. Prop. Atten. SDAE. Cent. Prop. Atten. SDAE.

Success 60 66 83 75 3 58 71 1 0
Failure 33 27 10 18 90 35 22 92 93
Success Ratio 65% 71% 89% 81% 3% 62% 76% 1% 0%

Fig. 4. Success ratio in each image size.

complete images. As for Attention-Reg, if we directly apply this for registration,
the success ratio is only 1% (w/o refinement). We believe the additional prepro-
cessing process for dataset affects the accuracy of the model. If we regarded it as
another pre-registration method and apply refinement, it achieves the second-
best performance, which means it could roughly register partial images but lacks
accuracy without the refinement stage. Multi-modal SDAE has an unexpectedly
bad result (122.967mm in anchor error), which we believe is due to two reasons.
Firstly, the fully-connected work used in this paper may not handle this problem
well. Secondly, ranking the similarities of patch pairs does not guarantee we can
find the correct pairs.

Fig. 4 shows success ratio for 4 different image sizes. We compared four
methods with MSE as the similarity metric in the refinement stage. Attention-
Reg is considered as a pre-registration method in this figure. With Medium
and Large 3DRA images, the performance of the four methods is close (all of
them are over 78%), which implies that for 3DRA images containing large parts
of brains, it does not matter what kind of initialization you choose, but other
factors, like the design of models or data collection, do matter. Besides, Center-
Init works poorly when the image size is small, as expected. Because center-
initialization always aligns the center of 3DRA and CT images, when it comes to
small and partial 3DRA images, the actual positions are far away from the initial
positions. The performance of w/o Patches and Attention-Reg is not as good as
the proposed method for small images. Meanwhile, these models need to predict
more parameters (3 for translation, 3 for rotation) than ours (3 for positions),
making it harder to train. When the size of 3DRA images is tiny, the Center-Init
and w/o Patches method will predict the position with a significant error. Our
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Table 2. Detailed statistics of the measured errors.

Methods Anchor Error (mm) Parameters Time (s)Mean CI 95 (%) Median

Center-Init 12.512 8.737 ∼ 16.286 1.017 0 16.580
w/o Patches 13.708 8.720 ∼ 18.696 1.017 13,344,390 19.773
Proposed 4.453 1.398 ∼ 7.508 0.894 3,846,531 28.583
Attention-Reg [19] 8.074 4.476 ∼ 11.673 0.988 1,838,601 21.202
Prop. w/o Refinement 14.512 13.006 ∼ 16.018 13.648 24.180
Prop. w/o RANSAC 13.303 6.771 ∼ 19.834 1.020 20.427

method works robustly even when image size is tiny compared to other methods.
The overall success ratios are better than others. Nevertheless, when the size of
3DRA images decreases, our proposed method exhibits an increasing number of
failures with large prediction errors showing that it is inherently difficult.

Table 2 shows the detailed statistics of 4 methods and two variants of the
proposed model. Similar to table 1, our proposed method has the least error. The
proposed method without refinement also has decent performance. Moreover, the
RANSAC is critical for our proposed method because it can filter wrong predic-
tions and improve the robustness of our pipeline. We also have a relatively small
parameter size, which allows our model to run on CPU-only devices. Besides, in
the training stage, compared to Attention-Reg, which requires 3 GPU (around
40GB GPU memory) for batch size 8, the proposed method only requires 1
GPU (around 3.6GB GPU memory) with batch size 64, which enables surgeons
to quickly and easily train the models they need. The last column explains the
execution time for completing the entire pipeline (Input: Unregistered DICOM
format file; Output: Registered DICOM format file).

Discussion Our method is a supervised learning method. Thus, we need a suffi-
cient amount of training data for each modality. We believe it is not a problem in
practice because we expect medical institutions to have a large set of annotated
ground truths through long-term clinical accumulation. However, training data
can be a bottleneck if one wants to apply the proposed method to other organs
or modalities without existing training data. Specifically, patch sampling could
be a problem. If image volumes are small and the patch size is large, we could
not have enough samples. While with small patch sizes, samples might not have
enough information for registration. We picked the patch size by trading off the
patch number and prediction accuracy.

We tested our method as initialization for rigid registration. Similarly, our
method can be helpful for initialization for deformable registration as well. Our
method can also be trivially extended to allow deformation for fitting image
patches to the target positions in the template space.

Our current implementation is rudimentary as an initial exploration, and
there are many venues to improve the performance further. One possibility is to
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apply data augmentation. We currently do not apply any data augmentation,
but various data augmentation methods such as random rotation could improve
performance. Another option is to evaluate the confidence of patch position
prediction. Replacing MSE with a more sophisticated DL-based local search
would further enhance the final results.

4 Conclusion

This paper introduced a novel learning-based initialization method for partial
image registration. By comparing the proposed network with traditional methods
and other learning-based methods, we demonstrate the efficiency and accuracy
of the proposed Template-Space Patch Mapping method. We also analyzed the
success ratio for different image sizes. Our proposed method has clear advantages
in cases with small image sizes. We hope to try our method on other medical
applications in the future and help surgeons to alleviate their workloads.
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